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Abstract

We developed an open source Internet backbone moni-
toring and traffic analysis framework named UPFrame. It
captures UDP NetFlow packets, buffers it in shared mem-
ory and feeds it to customised plug-ins. UPFrame is highly
tolerant to misbehaving plug-ins and provides a watchdog
mechanism for restarting crashed plug-ins. This makes UP-
Frame an ideal platform for experiments. It also features a
traffic shaper for smoothing incoming traffic bursts. Using
this framework, we have investigated IDS-like anomaly de-
tection possibilities for high-speed Internet backbone net-
works. We have implemented several plug-ins for host be-
haviour classification, traffic activity pattern recognition,
and traffic monitoring. We successfully detected the recent
Blaster, Nachi and Witty worm outbreaks in a medium-sized
Swiss Internet backbone (AS559) using border router Net-
Flow data captured in the DDoSVax project. The frame-
work is efficient and robust and can complement traditional
intrusion detection systems.

Keywords: framework, UPFrame, plug-in, NetFlow,
worm outbreak, anomaly detection, online analysis, host
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1 Introduction

The number of security incidents each year reported by
CERT/CC grew exponentially from 6 in 1988 to 137.529
in 2003 [7]. Recent massive Internet worm outbreaks such
as Blaster [21], Nachi [2], Witty [24] and Sasser [22] have
shown that millions of hosts [14] are patched lazily.

Monitoring traffic and detecting security problems in
near real-time still seems to be only a “nice to have” (i.e.
usually not implemented) capability for backbone network
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operators. Moreover, backbone operators currently have no
monetary incentive to provide attack detection and mitiga-
tion as they get reimbursed for attack and non-attack traffic.
Currently, security is mostly considered to be the responsi-
bility of the host and access-network operators. Network-
based intrusion detection systems set their focus on packet-
level inspection in stub networks. These systems do not
scale in high-speed networks since packet processing is ex-
tremely resource intense.

In this paper, we present our open source near real-time
monitoring framework named UPFrame (pronounced “up-
frame”). We explain its architecture, buffer management,
plug-in support, traffic shaping algorithm, and applicabil-
ity. Then we discuss several plug-ins that we developed
for online monitoring of high-speed backbone traffic in or-
der to detect worm outbreaks. We successfully used our
framework and validated our plug-ins by replaying the ac-
tual Nachi and Witty worm outbreaks from our large archive
of flow-level backbone traffic.

The paper is organised as follows: In Section 2, we de-
scribe flow-level backbone traffic and our DDoSVax traffic
archive, which we used the real world flow-level backbone
worm traffic traces from. Section 3 presents the UPFrame
framework. Section 4 describes the core ideas for our de-
tection algorithms. We demonstrate the effectiveness of our
algorithms by validating the implemented plug-ins on back-
bone traffic from the outbreaks of several Internet worms in
Section 5. The paper finishes with a discussion of the results
in Section 6 and our conclusions in Section 7.

2 Flow-Level Backbone Traffic
2.1 DDoSVax traffic archive

For our observations, we used flow-level traffic data from
the medium-sized Swiss Internet backbone AS559 operated
by SWITCH (Swiss Academic and Research Network [1]).
This backbone connects all Swiss universities and various
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research labs (e.g. CERN), federal technical colleges and
colleges of higher education to the Internet. NetFlow data
from all four AS559 border routers is captured and stored
on tape for research purposes in the DDoSVax project [25].
Figure 1 shows the DDoSVax capturing infrastructure.

The SWITCH Internet Protocol (IPv4) address range
contains about 2.2 million addresses. SWITCH carries
around 5% of all Swiss Internet traffic [16]. On a work-
ing day, network traffic between approximately 200’000
SWITCH-internal hosts and of approximately 800’000
hosts from outside the SWITCH network can be observed.
In 2004, on average 60 million NetFlow records per hour
were captured, which is the full, non-sampled number of
flows seen by the SWITCH border routers. The resulting
data repository of roughly 6 Terabytes of bzip2 compressed
NetFlow data per year, which contains the full SWITCH
border flow traffic data starting early in 2003, is currently
worldwide one of very few with a comparable size and level
of detail.

2.2 NetFlow

In Cisco’s NetFlow v5 [8] format that we use for our
DDoSVax traffic archive, consecutive network packets in
the same direction between the same two hosts (i.e. IPv4
addresses) using the same protocol (ICMP, UDP, TCP, oth-
ers) and port numbers are reported as a single 48 bytes flow
record. The number of packets, the total number of bytes in
the IP layer, start and end time of the flow in milliseconds
are also contained in the flow record as well as some local
routing information. Our NetFlow records contain no TCP
flags due to router restrictions.

3 UPFrame Framework

We were faced with the task to analyse NetFlow records
exported by the SWITCH border routers in near real-time.
These records arrive in bursts of UDP packets. We wanted
to be able to run several algorithms in parallel on each re-

ceived NetFlow packet with the option to distribute the pro-
cessing load on several computers. As a result, we de-
veloped a generic application framework, named UPFrame
with the core features:

Efficient capture: Receives and buffers incoming UDP
packets reliably at high packet rates.
Plug-in support: Can feed the received packets to plug-ins
that independently process the packets in parallel.
Traffic shaping: Buffers large amounts (megabytes) of in-
coming data to smoothen out data bursts. The built-in
traffic shaping mechanism can control the rate of the
data feed to any subscribed plug-in.

Robustness: Crashed or misbehaving plug-ins have mini-
mal impact on overall functionality and other plug-ins.
A configurable watchdog mechanism can detect and
restart unresponsive or unexpectedly terminated plug-
ins. It can also monitor the framework’s management
process.

Easy monitoring: The current operational state of the
framework can be observed via a web-interface and a
text-based interface suitable for automatic polling.

UPFrame was developed using C on Linux and has a size
of 12°000 lines of code. It works well on Linux kernels 2.4
and 2.6 on Gentoo Linux and Debian Sarge. It has also been
ported to FreeBSD 5.2.1. UPFrame is open source and was
initially released in 2004. It is under the GNU GPL [4] and
can be downloaded from the UPFrame web site [19].

It is noteworthy that UPFrame is not restricted to process
NetFlow data packets, which it provides a parsing library
for. It can process any UDP packet stream sent to a fixed
port.

3.1 Architecture

Figure 2 shows a sample setup of two chained UPFrame
instances. The router exports the NetFlow data as UDP
packets, which arrive at the writer process of UPFrame.
The writer stores these packets in shared memory segments,
which are read in parallel by several plug-ins. The “UDP
forward” plug-in forwards all packets, which it reads from
the shared memory segments, over the network to a sec-
ond instance of UPFrame on a remote computer. Likewise,
a “TCP forward” plug-in sends these packets over a TCP
connection to e.g. a legacy accounting system. This chain-
ing mechanism together with the plug-in support allows a
very flexible configuration. It would also be possible to send
the UDP packets to several destinations (either duplicating
or sampling the data) concurrently. It is possible to run
the framework in multiple instances on the same machine,
which can be helpful in a development setting. To enhance
security, an IP source address filter can be configured that
drops all UDP packets from unregistered addresses.
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Figure 2. UPFrame architecture

3.2 Buffering

NetFlow records exported by routers typically arrive in
short bursts of packets every few seconds. The burstiness
is even worse if data from more than one router is captured
at a single computer as the NetFlow data bursts may over-
lap. UPFrame prepares an internal pool of shared memory
segments of a configurable maximum size. These segments
are used in rather small blocks that are either in state free,
filled, or trashed as illustrated in Figure 3. A free shared
memory segment is waiting in a list of other free segments
to be filled with data by the writer process, after which it be-
comes filled. The lists of free and filled segments managed
by the memory management process are decoupled from the
writer process by FIFO queues. When only few data is re-
ceived by the writer and less memory is needed, the free list
is reduced to a given minimum size and the superfluous seg-
ments are marked as trashed. After a timeout they are given
back to the operating system. The plug-ins read data from
a filled buffer and advance to the next newer one as soon
as they are done with input processing. They can advance
at their own speed (or alternatively use the traffic shaper as
discussed in Section 3.3), which explains the different read
positions of the plug-ins in Figure 3.
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Figure 3. UPFrame buffer handling

3.3 Traffic Shaping

The traffic shaper is realized as a low pass filter on the
incoming traffic rate and uses the leaky-bucket [10] princi-
ple for buffering incoming bursts. In addition, we modulate
the output rate by writing out data faster if the memory
buffers (the “bucket”) fill up and slower if many buffers
are empty. A configurable maximum output rate prevents
the plug-ins from being overloaded. Mathematically, we
calculate once every second

n
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usec

]

segment

with t,,; being the current time delay after which the
next filled buffer (i.e. a shared memory segment) will be
fed to the plug-in (i.e. ¢, is the inverse segment process-
ing rate). Parameter n (e.g. n=100) is the number of past
inverse input rates t; considered. The current value of ;
is estimated once every second by averaging over the last
four writes of input data to buffers (i.e. shared memory seg-
ments). This sampling helps to reduce the processing load
for estimating ¢; and averaging partially smoothes out in-
put bursts. The weights c; are used to amplify more recent
behaviour and to attenuate older values. Function f.(b) re-
turns a positive flush coefficient that exponentially increases
when the current fraction b, defined as number of filled
buffers not yet read by the plug-in using the traffic shaper
divided by all filled buffers, raises. If b reaches 80% or
more, f.(b) starts an “emergency flushing”. We consider a
value of 2%-5% for fraction b as optimal for normal plug-in
operation based on our stress tests with real NetFlow data.



Finally, taking the minimum of ¢,,,, and the just calcu-
lated value limits the maximum speed for buffer-segment
processing.

Each plug-in can use an individual instance of the traf-
fic shaper by registering a call-back function for new data,
which is then called according to the result of the traffic
shaping algorithm. The traffic shaper and memory manage-
ment were successfully validated in stress tests in a Gigabit
Ethernet as documented in [18]. Figure 4 shows bursty in-
coming NetFlow traffic from one SWITCH router together
with the target rate by the traffic shaper (“filtered”) and the
measured real output rate (“outgoing”) of the UDP forward
plug-in with activated traffic shaping. The discrepancy be-
tween the “filtered” and the “outgoing” curve is due to net-
work socket buffering.
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Figure 4. UPFrame traffic shaping

3.4 Plug-in Support

Each plug-in runs as a separate process. The application
programming interface, realized as a library, gives access to
the shared memory data buffered by UPFrame. The plug-
ins either directly access the shared memory buffers through
the API at their own pace or alternatively register a call-back
function for UPFrame’s traffic shaper mechanism. The ma-
jor restrictions on the plug-ins are that they may not con-
sume too much main memory and processing power, since
they have to share these resources with the other plug-ins
and the framework.

3.5 Framework Monitoring

The framework gathers statistics about warnings (e.g.
when a plug-in suffers input data loss due to slow process-
ing), buffer level, number of received and discarded packets,
and others. These are accessible with our tool stat in human

readable form that can be processed by most plot and statis-
tics programs. There is also a watchdog, which can restart
not only the plug-ins but also the framework management
processes in case they crash. The performance mainly de-
pends on the plug-ins used, the framework itself was never
a bottleneck and has a very low CPU and processing over-
head.

3.6 Applicability of the Framework

UPFrame was developed with the primary goal of pro-
viding a solid base for experimental and production real-
time processing of backbone NetFlow data gathered in the
DDoS Vax project. Instead of dealing with capturing, buffer
management, traffic debursting, traffic shaping, resource
management, load balancing, and monitoring for failed pro-
cesses, the researcher can now focus on algorithm develop-
ment. Several algorithms can be run in parallel on the same
input without interfering with each other. We have also de-
veloped several NetFlow tools, e.g. for replaying DDoS Vax
NetFlow data with the same time characteristics as during
the initial capture, which allows to e.g. debug and test new
algorithms in “off-line” mode.

UPFrame is an extensible light-weight framework as its
name indicates and not a full-featured network monitor-
ing system. As the framework itself does not care about
the content of the captured UDP packets, it could also be
used to process e.g. measurement data from temperature
sensors. In Section 4, we give some sample use cases of
the framework for worm outbreak detection and P2P heavy
hitter identification. A test installation of the framework
at SWITCH (AS559) for online network monitoring dur-
ing several weeks confirmed the framework’s stability. In
early 2005, we monitored P2P traffic online with DDoSVax
AS559 border router NetFlow data for a few months for de-
veloping and validating a heavy hitter population tracking
algorithm. The validation was time critical, as we used P2P
application layer polling for confirming the P2P network of
a new P2P node found.

3.7 Related Work

Many NetFlow processing tools exist, commercial and
non-commercial ones. Unfortunately, many of them have
a very narrow focus, provide no open programming inter-
face (especially commercial ones) or are no longer main-
tained. CAIDA’s cflowd tool [6] was the first open source
NetFlow capturing and processing tool released in 1998. It
is no longer maintained by CAIDA. David Plonka adapted
and extended cflowd to Flowscan [17], which was imple-
mented with Perl scripts and modules and was optimised
to provide near real-time traffic bandwidth usage plots with
RRDTool [23] split by protocol type and port. No develop-



ment seems to have happened after 2003. Mark Fullmer’s
Sflow-tools [11], last updated in March 2003, are a collection
of NetFlow tools for capturing, storing, filtering and report-
ing. Some packet based network monitoring systems such
as ntop [5] also provide NetFlow support. The nProbe ex-
tension of ntop can act as NetFlow aggregator that emits
Cisco-like NetFlow records from packet captures or cal-
culate some basic statistics on the received flows. Those
packet-based tools were developed and optimised for mon-
itoring local area networks and not backbones.

4 Worm Detection Plug-ins

Even though high-speed Internet links have become a
commodity, only little is known about the actual host be-
haviour in large networks. Network operators often merely
count the total traffic that they transport for their customers
as they need it for accounting reasons, possibly split by the
most important protocols (TCP, UDP, ICMP, other) as well
as some well-known services (e.g. HTTP, SMTP). When
it comes to security incidents, some operators of larger
networks do forensic analyses on captured flow-level data.
However, they need to know exactly what to look for.

We developed several algorithms for host behaviour, net-
work activity and traffic characterisation and implemented
them as plug-ins for UPFrame. These plug-ins are able to
process incoming NetFlow data from the SWITCH border
routers in near real-time and store a log of the calculated
traffic statistics. A web server (not part of UPFrame) with
interactive scripts provide a graphical user interface for the
network operator to monitor traffic by using the plug-ins’
statistics and visualised output data of a given point in time
or a time range.

In the following, we describe the core ideas behind our
plug-in algorithms and why we think that they detect inter-
esting anomalies in the backbone traffic. Later in this paper,
we will apply them to monitor the outbreak of large-scale
Internet worms.

4.1 Host Behaviour Based Detection

Our host behaviour based analysis is described in full de-
tail in [9]. It assigns to each host a set of behaviour classes
within each one minute time interval. These classes are de-
fined such that a host becomes a member only if it behaves
unusual. A rapid change in the number of hosts in any class
indicates a significant change in the network behaviour of
the observed hosts. Our assumption is that if hosts try to in-
fect others during a worm outbreak, the behaviour of many
hosts will change in a similar way.

We define three behaviour classes by threshold condi-
tions that the traffic of an observed host must satisfy in or-
der to be member of that class. The values given in brackets

were used for the host behaviour plots in this paper. They
were optimised for making our behaviour based detection
sensitive to various major worm outbreak events (see also
[9]) by replaying DDoSVax NetFlow data to the plug-in
with different parameter settings and comparing the plug-
in outputs for most significant changes.

Bytes sent (>3)

traffic class: ——————
¢ Bytes received

e connector class: # outgoing connections (>10)

e responder class: # bidirectional connections (>1)

We define a bidirectional connection as a pair of flows in
opposite direction between a pair of hosts, where the start
times of the flows fall withing an interval of less than 50
ms. To accommodate large volumes of NetFlow data and
to assure real-time operation, a filter stage was prepended
to the plug-in, that filters the flows by protocol type (TCP,
UDP, ICMP single or combined).

The algorithm keeps two one minute time interval buck-
ets to sort the incoming flows. For each interval, a hash
table stores the the hosts seen together with the parame-
ters amount of traffic sent and received, and the number of
outgoing connections. Bidirectional connections are han-
dled with nested hash tables to achieve fast lookups and to
minimise memory requirements. The source host hash ta-
ble stores the source IP address for each observed host. A
lookup of such a host returns a hash table with all flows
originating at this host that were seen so far in the current
interval. An efficient lookup by a hash key of destination
IP address, source and destination port in this hash table is
enough to match a new flow with an existing one in the op-
posite direction.

An upper memory limit for this plug-in can be set. If the
plug-in needs more memory than the limit, it discards new
flows for the current interval and sets an appropriate error
code for the interval in its output data. When flows for the
next time interval arrive, the algorithm resumes its opera-
tion. This ensures that the plug-in can deal with a large-
scale attack that it was not designed for. The plug-in can
also deal with missing data (e.g. due to an interruption of
incoming NetFlow records) and will automatically start a
new time interval if it suddenly receives NetFlow records
that carry timestamps outside the currently observed time
intervals.

4.2 Activity Based Detection

The activity plug-in tracks the network activity of all
monitored Internet hosts. The activity of Internet hosts
could be visualised by plotting each of the 232 possible IPv4
host addresses in an image of 4°294°967°296 pixels. Each
pixel representing a single host is coloured depending on



the traffic amount a host has sent or received in a time in-
terval. As a square image of 65’536 pixels on each side is
too large in most settings, we let the user restrict the range
of the IP addresses displayed in the image and we add the
possibility to group neighbouring IP addresses (as “virtual
subnet” with /X bit subnet prefix) together and show their
total traffic with a single pixel. This virtual subnetting al-
lows to interactively zoom into subnetworks of interest with
a resolution of up to one pixel per host through an interac-
tive image map in the web interface of the plug-in.

The activity maps of Internet hosts in Figure 6 (TCP traf-
fic) and Figure 8 (incoming ICMP traffic) are organised in
stripes of neighbouring IP addresses as shown in Figure 5.
If hosts with neighbouring addresses are very active, they
can be seen as a line of lighter pixels. Black pixels indicate
no traffic at all. The number of bytes for each flow is ac-
counted once to the sending host as outbound and once to
the receiving host as inbound.
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Figure 5. The IP activity plot shows stripes of
neighbouring IP addresses

Regarding memory consumption, a naive approach
would use an array to hold the traffic amount for each of the
232 possible IPv4 addresses in two 4 byte integers, yield-
ing a memory footprint of 232 x (4 + 4) = 32 GB. As this
would be problematic in main memory, we use a hash table
and store only the traffic of observed hosts with activity in
the currently processed intervals.

4.3 Further Plug-ins and Analyses

We also implemented algorithms for filtering and count-
ing the number of flows for a given TCP or UDP source or
destination port, and for counting the number of unique IP
addresses using a service specified by ports and protocol as
shown in Figure 7. They are well suited to track down worm
activity as soon as the traffic characteristics of a new worm
are known. Due to the huge range of possible filter criteria
such port usage filters are less suited for the detection of un-
known worms. We developed another generic approach for
worm outbreak detection based on compressibility of cer-
tain network traffic parameters. In Section 5.2.2, we illus-
trate this method on the Witty worm outbreak. Experimen-
tal plug-ins for tracking P2P node activity for the most com-

mon P2P networks, as well as for the analysis of IRC traffic
between possible malicious IRC bots were also developed.
The large range of possible analyses shows that the frame-
work is a versatile platform for exploring new algorithms on
real traffic data. We use UPFrame mainly for research with
real-time and replayed NetFlow data. Since begin of 2005,
network services at ETH Zurich use UPFrame 24/7 with a
plug-in for monitoring P2P heavy hitters [15].

5 Analysis of Real Worm Traffic
5.1 Nachi Worm

The Nachi worm [2], also known as Welchia worm [3],
was an attempt to use a worm against a worm infection.
It was first observed on August 12th, 2003, around 6:00
UTC. Nachi exploited the same vulnerability as the original
Blaster worm, namely a DCOM RPC vulnerability on port
135/TCP of hosts running Windows XP. In addition, Nachi
also exploited a vulnerability in WebDAV on port 80/TCP
found in Microsoft IIS 5.0. The second exploit is believed
to mainly impact hosts running Windows 2000.  Unlike
Blaster, the Nachi worm uses an ICMP echo request (a.k.a.
”ping”) to determine whether a specific IP address is in use.
This caused massive ICMP activity. We observed that dur-
ing the Nachi outbreak as much as 6% of all packets and as
much as 1% of the total traffic volume in the SWITCH net-
work were caused by Nachi ICMP messages. Nachi also
seemed to have been fairly unsuccessful in stopping Blaster
and instead added to the overall damage.
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Figure 7. Blaster and Nachi worm outbreaks

5.1.1 Activity Based Analysis

Amazingly, the number of unique source IP addresses, from
which traffic to port 135/TCP originates per hour was more
than three times higher while Nachi was active compared to
during the Blaster outbreak as can be seen in Figure 7. The
sudden and intensive use of the formerly rarely used RPC
service can be clearly noted as a sign of anomalous host
behaviour.
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The very characteristic ICMP activity pattern of Nachi
can be observed in Figure 8. It is striking that IP addresses
containing the byte 0xC5 (=197 decimal) are not scanned,
which results in black lines in our ICMP activity plot (see
white arrows in figure). This can be easily explained ac-
cording to an article in the Virus Bulletin [12] by the fact
that for both of Nachi’s exploits, RPC DCOM and WebDAV,
it needs to patch shell code containing overlong paths with
the bytes of the IP address XOR-ed with 0x99. As 0xC5
XOR 0x99 = 0x5C and character 0x5C would be interpreted
as a backslash “\” character, the worm needs to avoid us-
ing it when patching the transmitted shell code. Such ir-
regular scanning activity is particularly useful to nail down
the cause of such ICMP scanning traffic. Such scanning
patterns involving many target networks can almost exclu-
sively be observed within a larger network.

5.2 Witty Worm

The Witty worm [20, 24] was first observed in the wild
on Saturday, March 20th, 2004, at approximately 4:45 UTC.
It exploits a bug in several products by Internet Security
Systems ISS [13]. The Witty exploit is UDP based. It dif-
fers from most other exploits insofar as it uses a randomised
target port and the fixed source (!) port 4000/UDP. The vul-
nerable host population for Witty was around 12’000 hosts.

Witty was the first fast worm that demonstrated that even
such a small vulnerable population can be infected in a mat-
ter of hours. Witty carries a destructive payload that causes
random data loss on the hard disk.

5.2.1 Host Behaviour Based Analysis

The Witty hosts, which involved many new hosts opening
connections with the fixed source port 4000/UDP shows up
clearly in the connector class plot of Figure 9. Around noon,
it seems that for almost 3 hours a filter was installed, which
was deactivated later.

The comparison of the connector class cardinality of the
“Witty day” with the regular “Witty-free” previous Saturday
shows the worm outbreak even clearer.

5.2.2 Compressibility Analysis

The Witty worm can also be reliably detected by tracking
the compressibility ratios of certain network traffic parame-
ters like IP source address, IP destination address, source
port, or destination port. Our compressibility detection
method is described in more detail in [26]. We store a se-
quence of the same packet header parameter (e.g. IP ad-
dress) over a 5 minute interval in an array. Then we com-
press this array using the 1zo algorithm and find the ratio of
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Figure 10. The Witty outbreak clearly changes the compressibility-ratio graphs

compressed vs. original data size. This ratio is then plot-
ted over time. In Figure 10, one can clearly see that after
the outbreak of Witty, the source ports become significantly

better compressible. This is caused by the fact that many
Witty UDP packets carrying the same source port 4000 can
be observed in the network. At the same instant, the des-
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Figure 9. The Witty outbreak significantly
raises the number of connecting hosts com-
pared to the previous Saturday.

tination ports and IP addresses become less compressible.
This is due to randomly chosen destination ports and IP ad-
dresses in the Witty packets by infected hosts.

6 Discussion

Classical IDS systems cannot be used for monitoring
high-speed networks, since they lack the needed perfor-
mance and are not well suited for new threats such as fast
worms. In addition they often require packet payload in-
formation, which is in most cases not available in backbone
networks and other fast networks.

We have shown in this paper that meaningful monitor-
ing of high-speed networks in near real-time is possible
with relatively low effort and based only on flow-level data.
In contrast to packet payloads, aggregated header informa-
tion in the form of flow records such as Cisco’s NetFlow is
usually available, since it is used for accounting and gen-
eral network load monitoring. While monitoring as we de-
scribed it in this paper may today be viewed as "nice to
have” by many network operators, it seems reasonably to
expect it to grow into a necessary element for successful
backbone operations in the future.

While this paper mainly focuses on attack patterns gen-
erated by outbreaks of fast worms, we believe that also other
types of events can be observed with comparable effort on
flow-level.

7 Conclusions

Our open source framework UPFrame [19] and its net-
work traffic monitoring plug-ins can help network service

providers to better monitor and react to anomalous network
activity in fast backbones with large traffic volumes. Having
near real-time network backbone traffic analyses ready im-
proves security as it cuts down reaction time in case of mas-
sive network attacks. Mere forensic analyses are no longer
sufficient for securing the Internet. We would like to enable
network operators to better know and understand the cur-
rent traffic in their network and to give researchers a tool
for exploring new worm and attack detection algorithms.

Our multi-paradigm approach to analyse traffic with a
multitude of efficient algorithms concurrently has proven
successful in catching anomalous traffic behaviour at the
outbreak of and during massive network attacks. The im-
pact and the clear visibility of real Internet worms like
Blaster, Nachi and Witty in high-speed backbone network
traffic were illustrated in various plots.

We want to emphasise that UPFrame can be used not
only for security related work, but also to gain better in-
sights into general network usage patterns. Future work
will be directed in further elaborating on anomaly detec-
tion plug-ins and to broaden the scope of algorithms tested
on real attacks using the ETH DDoSVax NetFlow archive
of SWITCH border router traffic.
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